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Age related changes to the dynamics of
contralateral DPOAE suppression in human
subjects
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Abstract

Background: The two ears are linked with a neural pathway such that stimulation of one ear has a modulating
effect on the contralateral cochlea. This is mediated by cochlear afferent neurons connecting with olivo-cochlear
efferents. The monitoring of this pathway is easily achieved by measuring contralateral suppression of otoacoustic
emissions, and there is some clinical value in the ability to assess the integrity of this pathway. An important step in
an evaluation of clinical utility is to assess any age-related changes. Accordingly, in the present study we measure
the dynamics of contralateral DPOAE suppression in a population of normal hearing subjects of different ages.

Methods: Using a real-time DPOAE recording method we assessed contralateral DPOAE suppression in 95 ears from
51 subjects (age range 2–52 years). DPOAE (2f1-f2; f2 = 4.4 kHz; f2/f1 = 1.22) input–output functions were measured.
In response to contralateral broadband noise, dynamic aspects of DPOAE suppression were measured, specifically
suppression onset latency and time constants.

Results: An age-related reduction in DPOAE amplitudes was observed. Both the detectability and the degree of
contralateral DPOAE suppression were decreased in older age groups. We find an age-related increase in the
latency of onset of DPOAE suppression to contralateral stimulation, but no significant change in suppression
time-constants.

Conclusion: Olivo-cochlear function as revealed by contralateral suppression of DPOAEs shows some important
age-related changes. In addition to reduced emissions (outer haircell suppression) we find an increased latency that
may reflect deterioration in auditory brainstem function. Regarding clinical utility, it is possible that the changes
observed may reflect an aspect of age-related hearing loss that has not been previously considered.

Keywords: Outer haircells, Superior olivary complex, Olivo-cochlear efferents, Cochlear inhibition, Aging,
Age-related hearing loss, Otoacoustic emissions
Background
Otoacoustic emission (OAE) recording has become an
important clinical tool for objective testing of cochlear
function, in particular to verify the integrity of the outer
haircell system. Distortion product otoacoustic emissions
(DPOAEs) [1] are widely used for neonatal screening and
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other diagnostic purposes in infants, but appear to be less
useful in adult testing. In part this is due to an age-related
decline in OAEs that has been demonstrated in a number
of human and animal model studies [2-8]. The outer
haircell system that generates OAE signals can be modu-
lated by activity in olivo-cochlear efferents originating in
the superior olivary complex of the brainstem [9,10]. An
olivo-cochlear “reflex” can be activated by contralateral
acoustic stimulation, which typically inhibits outer
haircells, and causes OAE suppression. Many authors have
reported on contralateral suppression of DPOAEs in
human studies and in animal models [11-14] and have
speculated on potential clinical applications [15,16]. It has
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:rvh@sickkids.ca
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Konomi et al. Journal of Otolaryngology - Head and Neck Surgery 2014, 43:15 Page 2 of 9
http://www.journalotohns.com/content/43/1/15
been suggested that this brainstem reflex may have
diagnostic value because the pathways involved include
both cochlear afferents and efferents, as well as inner and
outer haircell systems. However, contralateral DPOAE
suppression appears to have age related deterioration
[17-21] that could be a limitation on clinical utility. On
the other hand, such deterioration may reveal important
age related effects of clinical diagnostic value.
In our previous studies of contralateral DPOAE

suppression or modulation [14,16,22,23] we have used
real-time recording of DPOAE signals in order to
quantify the dynamics of DPOAE changes that result
from contralateral acoustic stimulation. In the present
study, in normal hearing human subjects, we report on age
related changes in these dynamic aspects including the
onset latency and time constants of DPOAE suppression.
Specifically we report an age-related reduction in DPOAE
suppression to contralateral stimulation, and also an
age-related increase in the latency of onset of DPOAE
suppression.

Methods
DPOAE levels and the effects of contralateral acoustic
stimulation were determined in 95 ears from 51 randomly
chosen subjects across a wide age range (2 – 52 years)
with no history of sensorineural or conductive hearing
loss. We did not formally assess audiometric thresholds
and did not exclude subjects because of hearing status
because our aim was to assess DPOAE suppression
dynamics in the general population. We divided our
subjects into five age groups as follows: 1–10 years,
13 subjects (24 ears); 11–20 years, 14 subjects (26 ears);
21–30 years, 8 subjects (15 ears); 31–40 years, 10 subjects
(19 ears), > 41 years, 6 subjects (11 ears). This study was
approved by the Research Ethics Board at the Hospital
for Sick Children, Toronto, and was carried out with the
consent of adult participants or parents of children prior
to testing.

Measurement of real-time DPOAE suppression
DPOAEs were recorded in real-time using a custom
research device (Vivo 600DPR; Vivosonic, Toronto,
Ontario, Canada). The device uses narrow bandpass
digital filtering and signal modeling to determine DPOAE
levels in real-time with a temporal resolution of <2 ms
[23]. All recordings were made in a sound-attenuating
room. The DPOAE was determined from the 2f1-f2
distortion product (f2=4.4 kHz; f2/f1 = 1.22; L1 = L2 -10 dB).
The stimulus levels used for DPOAE recording were
adjusted for each subject based on individual input–output
(I/O) functions. Thus, I/O functions were recorded with
f2=4.4 kHz, at levels of L2 from 50 - 70 dB SPL, and
the stimulus level chosen was that resulting in a DPOAE
signal at 0.5 – 0.7 of maximum level [24]. Contralateral
stimulation was a 0.5 s duration broadband noise at 50 dB
SPL intermittently presented every 1.5 s. This signal was
generated by Adobe Audition software (Adobe Systems
Inc., San Jose, CA) and presented via an Etymotic
Research ER-2 transducer (Etymotic Research, Elk
Gorge Village, IL).

DPOAE data analysis
For each ear we have measured baseline DPOAE levels,
and then in response to contralateral stimulation the
amplitude of DPOAE suppression, and the dynamic
aspects, specifically the onset latency and time constants of
suppression. The suppression onset latency was measured
as the interval between the onset of contralateral noise
stimulus and the initial change point in DPOAE calculated
from the intercept of linear regressions plotted through the
baseline and first part of the suppression response [14].
Occasionally a very large (by an order of magnitude)
DPOAE suppression was observed, caused by a middle ear
muscle reflex. These artifacts were excluded from the data
before analysis [22]. Tests for statistical significance were
made with SPSS software (Sigma Plot 11.2; SPSS Inc.,
Chicago, IL). Fisher exact test was used in the comparison
of presence rate of DPOAE suppression in each age group.
Correlation coefficients were determined using Pearson
product moment correlation.

Results
DPOAE amplitude with age
The DPOAE amplitude (f2 = 4.4 kHz) as a function of
subject age is plotted in Figure 1. In A (upper panel)
DPOAE amplitude was determined with L2 = 50 dB SPL. In
graph B, L2 = 60 dB SPL. The data (N = 89 ears) indicates a
clear decrement of DPOAE amplitude with age. A linear
regression analysis shows a correlation between the DPOAE
amplitude and age, and that DPOAE amplitude decreases
significantly with age. Thus in plot A (L2 = 50 dB) the
correlation coefficient = −0.49 (p < 0.001), and in plot B
(L2 = 60 dB) correlation coefficient = −0.64 (p < 0.001).
See Table 1 for details.

Contralateral DPOAE suppression with age
Contralateral DPOAE suppression was not reliably
observed in all subjects. Overall it could be measured
in only 47% of ears. The remaining 53% showed a
DPOAE, but there was a lack of OAE suppression to
contralateral stimulation. Figure 2 indicates the % presence
of contralateral DPOAE suppression as a function of
subject age. This is 62.5% in the 1–10 year group; 65.4% in
11–20 year group; 33.3% in the 21–30 year group; 31.6%
for the 31–40 year group, and only18.2% in the >41 year
group. The differences of those rates in each group were
compared by Fisher exact test, and the groups with
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Figure 1 DPOAE (2f1-f2) amplitude as a function of age. In the upper plot (A) stimulus level L2 = 50 dB SPL. In lower graph (B) stimulus
L2 = 60 dB SPL. Pearson’s correlation coefficients and statistical significance values are indicated.
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significant (p > 0.05) differences (1–10 vs. >40; 11–20 vs.
31–40; 11–20 vs. >40) are indicated.
Figure 3 shows the amplitude of suppression as a function

of age in those subjects where this could be determined. A
linear regression analysis shows a low correlation coefficient
Table 1 Dynamics (DPOAE suppression onset latency and tim
suppression in different age groups

Age group (years) N Age (years) Suppression

Ave. SD Ave.

neonates (<3 month) 40 2.5 (week) -6.7 to 15 (week) 3.0

1 - 10 13 6.3 2.9 0.18

11 - 20 14 12.8 2.3 0.11

21 - 30 8 21.4 0.5 0.17

31 - 40 10 34.5 2.9 0.07

41 - 6 44.5 4.9 0.05

total 15 15.9 11.4 0.13

The neonate data is derived from a previous report from our group [16].
of −0.32 (p = 0.003) indicating a trend towards less suppres-
sion as a function of age. Our data indicate that contralateral
DPOAE suppression is more difficult to detect with increas-
ing age either because of reduced DPOAE levels or because
of deterioration in olivo-cochlear pathway function with age.
e constants) and amplitude of contralateral DPOAE

amplitude (dB) Onset latency (ms) Onset time constants (ms)

SD Ave. SD Ave. SD

- 60 - - -

0.15 79.2 18.7 379.8 64.8

0.08 90.2 28.3 410.1 47.3

0.08 109.4 29.4 384.6 113.5

0.04 115.8 45.9 415.0 59.1

0.02 137.5 44.5 379.5 115.3

0.11 94.2 32.0 396.0 65.4
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Figure 2 The presence rate (detectability) of contralateral DPOAE suppression dynamics by age group. Fisher exact test results are
indicated. The neonatal data is derived from a previous report from our group [16].
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Age-related changes in DPOAE suppression dynamics
Real-time derived DPOAE signals from three representative
subjects of different ages (4, 21, 48 years) are shown
in Figure 4. The lower bar indicates the duration of
the contralateral noise stimulus. The early arrow symbols
mark the onset of DPOAE suppression; the second arrow
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Figure 3 Amplitude of contralateral DPOAE suppression as a function
are indicated.
approximates the time constant of DPOAE change
(exact value shown in data box). In these examples, as in
general, the age-related changes of DPOAE suppression
are a decrement of amplitude, and a prolongation of onset
latency. The onset latencies of suppression and the time
constants of suppression are plotted as a function of
30 40 50
t age (years)

Pearson’s correlation 
coefficient: -0.32 
P value: 0.003
(N=45)

of age. Pearson’s correlation coefficients and associated p values
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Figure 4 Real-time derived DPOAE signals from three representative subjects of different ages (4, 21, 48 years). The lower bar symbol
indicates the onset and duration of the contralateral noise stimulus. Arrow symbols mark suppression onset latency, and time constants
(data boxes show the exact values).
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subject age in Figure 5. For suppression onset (plot A)
there is clearly an increased latency as a function of age
indicated by the linear regression analysis (correlation
coefficient = 0.53; p < 0.001). For the time constant of
suppression (plot B) there is no significant change as a
function of age (correlation coefficient = −0.09; p = 0.570).
In Table 1, the average (and SD) of suppression magnitudes,
onset latencies and suppression time constants are shown
for each age group.

Discussion
Degradation of DPOAE with age
Previous reports have described a reduction in amplitudes
of OAEs with aging [4-8,25]. In addition it has been
reported that the rate of spontaneous OAEs is lower
in elder subjects [26]. In the present study, DPOAE
amplitudes decreased with age similar to that reported in
previous work. There has been much discussion about the
possible causes of age-related declines and it is likely that
many factors contribute. These include loss of sensory
cells, degeneration of stria vascularis, and reduction in the
endolymphatic potential. Other more central causes of
presbycusis such as loss of spiral ganglion cells [27,28]
logically do not contribute directly to reduction in outer
haircell generated OAEs (although there could conceiv-
able be some indirect effects). Some animal studies of
presbycusis have shown that functional hearing loss pre-
cedes or is greater than expected from haircell decrements
[3,29]. This suggests that perhaps OAE reductions have
non-sensory cell origins such as strial degeneration or the
degradation of tectorial and basilar membrane integrity.

Aging of olivo-cochlear function
Recent studies have reported a degradation of contralateral
suppression of transient evoked OAE in human with
advancing age [30,31]. Oliveira et al. [31] evaluated such
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Figure 5 Dynamic aspects of contralateral DPOAE suppression as a function of age. The upper plot (A) shows onset latency of DPOAE
suppression versus age. The lower graph (B) shows suppression time constants versus age. Pearson’s correlation coefficients and associated p
values are indicated.
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changes in subjects from 20 to over 60 years of age
and showed that subjects over 40 yrs. had a significant
decrement of suppression effect compared with those in
their second and third decade. In our study we report a
significant reduction in the presence (or detectability) of
suppression with age. This is illustrated in Figure 2, in
which we have included neonatal data from our previ-
ous study [16] where we reported a detection rate
of contralateral DPOAE suppression (tested with the
same methodology) of 95%. We propose that the age
related degradation of contralateral OAE suppression
starts from childhood, and is not confined to an elderly
population. The corollary to the notion that there is
a decline with age is to suppose that olivo-cochlear
function is most important during early development.
In that respect, a recent study reported that contralateral
suppression of OAEs was significantly lower in children
with receptive and expressive language delays compared
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with normal children [32]. It is possible that the medial
olivo-cochlear system is important in the development of
normal sensory pathways and auditory learning [32,33].
Our results suggest that the olivo-cochlear function,
as revealed by contralateral suppression of DPOAEs, is
very robust in a neonatal period but declines thereafter.
We note that our mean DPOAE suppression amplitude

was relatively small (0.13 dB) compared to some
other reports. For example Bassim et al. [34] reported
the amplitude of DPOAE suppression by contralateral
noise (in 20–30 year olds) to be 1.1 dB. In this case one
major difference was the higher intensity (60 dB SPL) and
longer duration (>4 s) of contralateral stimulus used
compared to 0.5 s in the present study. We use this
example to indicate the general difficulty in comparing
across studies that use differing OAE measurement
methods and stimulation protocols. In our study we find a
general reduction in DPOAE suppression amplitude with
age that is in agreement with a number of previous
reports [17-21,30,31]. The cause of the suppression ampli-
tude reduction can only be speculated on. There are the
age-related cochlear changes that we discussed above in
relation to OAEs, and in addition the degradation of more
central auditory processes should be considered. These
include inner haircell synaptic changes, de-myelination of
neurons, and functional decline and decrement of cell
number in cochlear nucleus [35-37]. Age-related synaptic
loss of the MOC efferent innervations [38], the change
of calcium regulatory proteins, and neurotransmitter
acetylcholine (Ach) [39] have also been reported.

Age-related change in dynamics of DPOAE suppression
In addition to our own studies [14,22,23] on the dynamics
of contralateral DPOAE suppression there have been a
number of other reports [34,40-43] however very few de-
scribe age-related changes. In mice, Sun and Kim reported
that old animals tended to have a smaller adaptation
magnitude and longer suppression time constants than
younger mice, however they report no statistically signifi-
cant changes in suppression onset latency [17].
In humans there is still much uncertainty about the

actual latency of the olivo-cochlear reflex as revealed by
contralateral OAE suppression. Mott et al. reported that
contralateral stimulation changes spontaneous OAEs with
latencies in the range of 40–200 ms (median = 120 ms);
their methodology had a temporal resolution of 40 ms
[44]. Lind reported a 40–140 ms latency range for contra-
lateral TEOAE suppression using a system with a 20 ms
temporal resolution, respectively [45]. In the present study
we use a system with a temporal resolution that can be as
low as 2 ms, and have previously reported a DPOAE sup-
pression onset latency of 109 ms in young (20-30 yr)
adults [23]. In other reports much lower latencies have
been reported. Thus, Maison et al. described a TEOAE
suppression latency of less than 60 ms in 25–35 year old
subjects [40]. Backus and Guinan reported a very short
latency of 25 ms (15-40 ms) for the medial olivo-cochlear
reflex in young adults [41]. Other studies have reported
on various temporal aspects of the olivo-cochlear re-
flex [34,42,43], however, comparing these is difficult
because of the various OAE recording methods, and
protocols used.
It is useful perhaps to dissect out the timing at points

along the pathway involved in contralateral suppression
of DPOAE as follows: (i) stimulus transduction delay,
from acoustic signal onset to the activation of inner hair
cells; (ii) afferent neural transmission delay from the
cochlea to (anteroventral) cochlear nucleus, to the
superior olivary complex; (iii) inter-neuronal connection to
cochlear efferent neurons; (iv) efferent neural delay from
superior olive to OHCs via the crossed olivo-cochlear
bundle; and (v) synaptic and mechanical activation times at
OHC level including time for same to be manifest as
DPOAE changes. The delay of step (i) is relatively small
(<3 ms) and the timing of (ii) is similar to the latency of
ABR wave PIII, approximately 6 ms. We will consider delay
(iii) later. Regarding to the neural delay of (iv), Fex reported
the efferent neural delay is 1.9-3.9 ms in the cat [46]. Since,
the length of efferent neurons in human is about 3 times
those of cat, the delay of (iv) could be approximated to
10 ms in human. Konishi [47], and Kemp [48] and
their colleagues observed (guinea pig) cochlear events
(microphonics or OAEs) resulting from electrical stimula-
tion of the crossed olivo-cochlear bundle and report a
10 ms delay which includes OHC post-synaptic events.
This suggests that OHC post-synaptic delays are much
longer than the cochlear efferent neural delays and that
the total delay of step (v) in humans could be 30-50 ms.
All of these timing values are, of course, approximations
particularly when making extrapolations from animal
models. However it is clear that delay (iii), an inter-
neuronal processing within the superior olive, adds a
significant time factor. There have been reports of age-
related functional degradations in brainstem areas including
the superior olive [49,50] and we suggest that a significant
part of the age related latency increase in DPOAE suppres-
sion onset originates at point (iii), the superior olive.
Regarding cochlear events, we report here that DPOAE

suppression time constants did not show any significant
age related changes (Figures 4 and 5). We interpret this as
indicating that OHC mechanical events are not much
affected by aging. However we are inclined to interpret our
data with some caution. As can be noted in Figure 4,
DPOAE suppression did not fully plateau with 0.5 s of
contralateral stimulation, thus it is possible that we did not
fully measure the overall time constants of DPOAE
suppression. Other studies have been more analytical and
describe DPOAE suppression or adaptation with a fast and
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a slow, two-exponent function [34,43]; our data are
consistent with time constants reported for the fast
component of the suppression, but missing the slow
component. Bassim et al. suggest that 10-20 s is required
to characterize the slow component [34].

Conclusions
We report that DPOAE amplitude and DPOAE suppres-
sion by contralateral stimulation are degraded with aging,
and some dynamic aspects of suppression are also changed
with age. Our study was prompted by questions about the
clinical utility of DPOAE suppression testing. We conclude
that in neonates and young children, contralateral suppres-
sion of DPOAEs can be reliably measured, and can poten-
tially inform us about the integrity of OHCs, of cochlear
afferent and efferent function and also auditory brainstem
mechanisms. We are particularly enthusiastic about our
own real-time DPOAE measurement technique because it
easily allows the DPOAE suppression dynamics (latency,
time constants) to be quantified. We questioned whether
such clinical testing was feasible in older subjects and find
that the degree and detectability of DPOAE suppression
falls off with age. For a clinical test to be widely applicable
this may be considered a problem. On the other hand it
may be revealing an important parameter of age related
hearing loss that we have not been addressing previously.
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