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Cuproptosis-related gene subtypes predict 
prognosis in patients with head and neck 
squamous cell carcinoma
Chi Wang1 and Yu Zhou2*   

Abstract 

Background Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. 
A novel form of copper-dependent and reactive oxygen species (ROS)-dependent cell death, cuproptosis, has been 
described in many cancers. The roles and potential mechanisms of cuproptosis-related genes (CRGs) are still unclear 
in HNSCC.

Method We downloaded TCGA datasets of HNSCC genomic mutations and clinic data from The Cancer Genome 
Atlas. Based on the Cuproptosis-related differentially expressed genes in HNSCC, we constructed a prognostic 
signature.

Results Eight CRGs have been identified as associated with the prognosis of HNSCC. According to Kaplan–Meier 
analyses, HNSCC with a high Risk Score had a poor prognosis. Furthermore, the AUC of the Risk Score for the 1-, 3-, 
and 5- year overall survival was respectively, 0.70, 0.71, and 0.68. TCGA data revealed that T cell functions, such as HLA, 
cytolytic activity, inflammation regulation, co-inhibition, and co-stimulation, differed significantly between members 
of the low and high groups. The immune checkpoint genes PD-L1, PD-L1, and CTLA-4 were also expressed differently 
in the two risk groups.

Conclusions A CRG signature was defined that is associated with the prognosis of patients with HNSCC.
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Graphical abstract

Introduction
Squamous cell carcinoma of the head and neck is the 
sixth most common cancer worldwide, and the 5-year 
survival rate is less than 50% despite surgery [1]. Head 
and neck squamous cell carcinoma (HNSCC) arises from 
the mucous membranes of the mouth, pharynx, and lar-
ynx, primarily due to the consumption of tobacco and 
alcohol. In HNSCC, clinicopathological characteristics 
such as extracapsular nodal spread, positive margins, 
multiple positive nodes, or perineural/vascular inva-
sion have been found to be prognostic factors, most of 
which lack biological or clinical validation [2]. The lack 

of accurate biomarkers for early diagnosis or subopti-
mal preclinical models has limited the effective manage-
ment of HNSCC. Currently, several antitumor drugs can 
induce apoptosis of cancer cells. To overcome tumor cell 
resistance and uncover new and efficient prognostic bio-
markers for HNSCC, it is particularly important to inves-
tigate other forms of cell death.

Copper has been found to be involved in many impor-
tant physiological processes, such as mitochondrial res-
piration, antioxidant defense, and the biosynthesis of 
hormones, neurotransmitters, pigments, and cell death [3]. 
A recent study has found that copper can induce another 
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type of cell death that differs from apoptosis, autophagy, 
or ferroptosis, and has been defined as Cuproptosis, as it 
involves the tricarboxylic acid cycle [4, 5]. Previous studies 
have shown that copper participates in three fundamen-
tal cancer processes: cell proliferation, angiogenesis, and 
metastasis [6, 7]. Copper as a cofactor plays an important 
role in the motility and invasiveness of tumor cells, as well 
as many angiogenic mediators [3]. Dysregulation of cop-
per metabolism is associated with cancer risk and tumor 
growth. Cancer cells exhibit copper addiction compared 
to normal cells, which is the over-reliance on copper for 
proliferation, which opens a new therapeutic frontier for 
cancer treatment. Cu ion levels are higher in tumor tis-
sue and serum of cancer patients including oral cancer, 
bladder, breast, cervical, lung, pancreatic, ovarian, pros-
tate, thyroid, and gastric cancer, than in healthy subjects 
[8–11]. Other studies have shown that increased cop-
per intake is significant in promoting cancer growth in 
breast, prostate, pancreatic, colorectal, ovarian, lung, and 
head and neck cancers [12–16]. Furthermore, severe cop-
per deficiency induced by a low copper diet depresses the 
immune system of mice, which increases cancer burden. 
Given that copper preparations are used in the treatment 
of different types of cancer with a good therapeutic effect, 
it is crucial to explore biomarkers for HNSCC to better 
stratify patients and provide personalized treatment. Cur-
rently, very few studies have investigated the involvement 
of Cuproptosis in HNSCC. Advanced research technology, 
such as microarrays and bioinformatic analysis, has widely 
been used to screen and identify differentially expressed 
genes (DEGs) in diseases. We explored DEGs involved in 
cancer progression in HNSCC.

Since copper-induced death mechanisms are shared 
by genetic models of copper homeostasis dysregulation, 
copper homeostasis-related classification may impact 
on prognosis and the immune response of patients with 
HNSCC [3]. Therefore, identifying CRG signatures may 
help to elucidate the causes of heterogeneity in HNSCC. 
Our study aimed to develop a prognostic marker for 
HNSCC, which was capable of predicting conventional 
and immunotherapy prognoses. By screening immu-
norelated hub genes associated with patient prognosis by 
weighted gene coexpression network analysis (WGCNA) 
using HNSCC transcriptome data, we developed an 
prognostic index based on CRGs, which we defined the 
immunorelated gene prognostic index (IRGPI).

Methods
Data sources and preprocessing
The HNSCC gene expression data and the clinical fol-
low-up data were downloaded from the public database 

-The Cancer Genome Atlas (TCGA) database. The stud-
ies involving human participants were reviewed and 
approved by ethics committee of Hospital of Stoma-
tology, Wenzhou Medical University(NO.2022010). A 
total of 514 HNSCC samples with prognostic informa-
tion were retained after excluding the samples lacking 
information on survival time and those with survival 
time less than 30 days. Furthermore, the GSE65858 head 
and neck cancer dataset from the NCBI GEO database 
obtained using the GPL10558 Illumina HumanHT-12 
V4.0 expression beadchip sequencing platform [17], 
which contained 270 samples with prognostic informa-
tion for subsequent validation analysis was retrieved for 
our analysis.

Expression differences and correlation analysis 
of cuproptosis genes
Nineteen CRGs (DBT, ATP7B, FDX1, LIPT1, ATP7A, 
DLAT, LIPT2, LIAS, DLD, NFE2L2, SLC31A1, PDHB, 
MTF1, PDHA1, GLS, NLRP3, CDKN2A, GCSH, and 
DLST) were obtained from the available literature [4]. We 
observed the differences between these genes in HNSCC 
versus normal tissues and calculated the Pearson direct 
correlation coefficient for the 19 genes.

Identification of cuproptosis subtypes in HNSCC
Tumor subtype analysis was performed on the sam-
ples using unsupervised hierarchical clustering Version 
1.54.0 [18], for the 19 Cuproptosis genes obtained in 
Sect.  "Expression differences and correlation analysis of 
Cuproptosis genes" above, to obtain the optimal Cuprop-
tosis subtypes (K value), where the K value range was set 
from 2 to 6.

Verification of the cuproptosis score of molecular subtypes 
(verification of rationality)
For the 19 Cuproptosis genes obtained in 2.2 above, 
GSVA algorithms [19] (version: 1.36.2) were used to cal-
culate each enrichment fraction of head and neck cancer 
samples, in order to represent the Cuproptosis rate in 
each sample. The Wilcoxon test was then used to com-
pare and analyze the differences in the Cuproptosis score 
among different Cuproptosis subtypes to further verify 
clinical associations with Cuproptosis subtypes.

Correlation analysis of prognosis and clinical data 
of different subtypes
Evaluation of the correlation of survival prognosis of 
different subtypes between the sample group with the 
Kaplan–Meier curve method was performed using the 
R3.6.1 language survival pack Version2.41-1 [20].
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Comparison of the immune microenvironment 
between different subtypes
The concept of tumor immune microenvironment is 
that there are a large number of immune cells surround-
ing and with the tumor tissue. Several relationships exist 
between these immune cells and tumor cells. There are 
many types of immune cells; thus, the so-called immune 
microenvironment, or an analysis of immune infiltration, 
essentially determines the proportion of immune cells in 
the tumor tissue. In this analysis, the following two algo-
rithms were used to evaluate the status of the immune 
microenvironment in HNSCC samples, and differences 
in infiltration between different subtypes were tested 
using the Wilcoxon test.

We calculated the composition of 22 types of immune 
cells in HNSCC using CIBERSOR [21]. Based on linear 
support vector regression, CIBERSORT allows deconvo-
lution of the expression matrix of immune cell subtypes. 
The ESTIMATE and the Estimator [22] algorithm tool 
are used to calculate the stromal score and immune score 
of tumor samples based on expression data of immune 
cell types.

Comparison of immune checkpoint genes and HLA family 
gene differences between subtypes
Immune checkpoint genes (PD1(PDCD1), PD-L1(CD274); 
CTLA-4(CTLA4); CD278(ICOS); TIM3(HAVCR2); LAG3; 
CD47; BTLA; TIGIT; MYD1(SIRPA); OX40(TNFRSF4); 
4-1BB(TNFRSF9); B7-h4 (VTCN1)) and HLA family genes 
were extracted from HNSCC expression data;). The Wil-
coxon test was used to compare the differences ins expres-
sion of immune checkpoint genes and HLA family genes 
among subtypes.

Identification of specific genes between subtypes
To observe the different molecular mechanisms that 
may exist between different Cuproptosis subtypes, we 
used the linear regression and empirical Bayes method, 
provided by the limma package (Version 3.10.3) [23] to 
perform differential analysis of gene expression between 
different subtypes, and the corresponding P-value and 
log2fold change (FC) of the gene were obtained. In addi-
tion, the Benjamini–Hochberg method is used for mul-
tiple test correction, and the corrected P-value was 
corrected  via Kolmogorov–Smirnov test, expressed as 
adjusted P-value. Fold change and significant difference 
were determined and statistical significance was set at 
P < 0.05 and |log2FC|> 1.The differentially expressed 
genes (DEGs) were defined as those specifically expressed 
between subtypes.

Functional enrichment analysis
For DEGs obtained in step “Identification of specific 
genes between subtypes”, we performed a Gene Ontol-
ogy (GO) function analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
sis with ‘clusterProfiler’ of the R package (version 4.0.5) 
[24] to explore the entry of functional pathways involved 
in key genes. The Gene Ontology (GO) is an internation-
ally standardized classification of gene functions that 
generates a dynamically updated Controlled Vocabulary 
for describing organism products. Genes are described 
by three ontologies in GO: molecular function, cellular 
component, and biological process. With a P-value < 0.05 
and FC > 2 as thresholds, the most significant TOP10 
genes were selected for our analysis.

Identification of prognostic genes
Based on the DEGs identified from in Step “Identification 
of specific genes between subtypes”, a Univariate Cox 
regression analysis was performed in the Survival Pack-
age v2.41–1 to select specific genes whose expression was 
significantly correlated with the survival prognosis for 
subsequent analysis.

Construction and performance verification 
of the prognostic model (Risk Score)
By applying cross-validation based on prognosis-related 
genes in Step Identification of prognostic genes, key 
genes were selected using LASSO analysis (lars pack-
age v1.2) with penalty tuning parameters (lambda value). 
Furthermore, a Risk Score was established by multivari-
ate stepwise Cox regression analysis with the survminer 
package (Version 0.4.9).

In this formula, β refers to the regression coefficient, 
ho(t) is the benchmark risk function; H (t,X) is the risk 
function related to X(covariable) at time t.

This formula was used to calculate the Risk Scores for 
the training set samples (TCGA) and the validation set 
samples. Using the Risk Score formula, we divided each 
sample into low- and high-risk groups. Kaplan–Meier 
analysis was used to compare the survival rates of high- 
and low-risk patients.

Independent prognostic analysis
By integrating clinical data with HNSCC, the correlation 
between the risk groups and clinical information (age, 
sex, stage, ImmuneScore,Clinical_N, Clinical_T,grade) 
was analyzed. Univariate and multivariate independent 

Risk Score = h0(t) ∗ exp (β1X1 + β2X2 + · · · + βnXn)
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prognostic analyses were performed to determine the 
relationship between clinical features and the risk groups. 
The Forest plot of the R package was used to visualize the 
results of independent prognostic factor analysis with 
P-values < 0.05.

The construction of the nomogram model
A nomogram was created using the R software package 
and the nomogram function of the rms library v5.1-2 [25] 
based on the independent prognostic factors selected in 
Step “Independent prognostic analysis”. Nomograms are 
used to assess the correlation between independent sur-
vival factors and prognosis and survival prediction.

Analysis of drug sensitivity
The cancer drug sensitivity genomic database was used 
to estimate the sensitivity of each patient to chemother-
apy drugs. The half maximum inhibitory concentration 
(IC50) was calculated using the drc in the R package [26]. 
IC50 differences of 138 chemotherapeutic drugs were 
compared between different risk groups with the Wil-
coxon test.

Prediction of the efficacy of immunotherapy
The response to checkpoint blockade immunotherapy 
of each patient was predicted using the Tumor Immune 
Dysfunction and Exclusion (TIDE) tool, defined as TIDE 
prediction scores, and the Wilcoxon test was used to 
compare TIDE scores in different risk groups.

Gene set enrichment analysis
Gene Set Enrichment Analysis (GSEA) is a calculation 
that is used to assess whether differences between bio-
logical states can be statistically significant [27]. In this 

study, GSEA was used to analyze the significant enrich-
ment of Hallmark gene sets (H) (v7.4.symbols) in the 
entire genome between the high- and low-risk groups, 
|NES|> 1 and FDR < 0.05 were considered statistically 
significant.

Associations between risk groups and cuproptosis 
subtypes
The Sankey diagram was drawn by combining the sub-
type grouping (group) and the high- and low-risk group 
(risk group) of the samples using the ’ggalluvial’ package 
[28] to observe the relationship between the cuproptosis 
subtype and the HNSCC high-risk group.

Results
Expression patterns of the cuproptosis genes
We identified a set of 19 putative CRGs (with different 
expression patterns. As shown in Fig.  1A, the expres-
sion of 15 (GLS, FDX1, LIPT1, ATP7B, SLC31A1, LIAS, 
DLAT, PDHA1, NFE2L2, PDHB, DLD, MTF1, CDKN2A, 
ATP7A, and DBT) of the 19 genes were significantly dif-
ferent between HNSCC and normal samples (P < 0.05). 
Of these, 2 genes (CDKN2A, GLS) were up-regulated, 
and the other 13 genes were down-regulated in HNSCC 
samples. To explore the association between different 
genes associated with cuproptosis, we describe correla-
tion patterns between the 19 genes (Fig. 1B). The infor-
mation is shown in Additional file 1: Appendix 1.

Identification of cuproptosis subtypes in HNSCC
For the 19 CRGs identified in Step Expression patterns of 
the cuproptosis genes, an unsupervised cluster analysis 
was performed on HNSCC samples (Fig. 2A), setting the 
K value range from 2 to 6, the optimal K = 2 is selected. 

Fig. 1 A Boxplot illustrating 19 Cuprotosis-related genes expression in HNSCC samples and associated normal controls. * indicates a p value 
of less than 0.05; ** indicates a p value of less than 0.01. B The heatmaps showing the expression levels of the 19 Cuprotosis-related genes. X stands 
for no biological significance
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As shown in Fig. 2B, two different subtypes (C1 and C2) 
were obtained and contained 232 and 282 HNSCC sam-
ples, respectively (Additional file 1: Appendix 2). Propor-
tion of ambiguous clustering (PAC) verification curve as 
shown in Fig. 2C further verifies the stability of the clus-
tering results. The minimum value of PAC, namely with 
an optimal K, is 2.

Comparison of cuproptosis scores
For the 19 cuproptosis genes, the GSVA algorithm was 
used to calculate the enrichment score in each HNSCC 
sample to represent the cuproptosis score for each sam-
ple, as shown in Figure 3. The cuproptosis score was sig-
nificantly different between the two subtypes (Additional 
file  1: Appendix  3), with the cuproptosis score lower in 
cluster C1. Therefore, the stratification of the cuproptosis 
subtypes was further confirmed.

Survival analysis and clinical correlation of subtypes
Kaplan-Meier curve analysis was used to assess the cor-
relation between survival and prognosis of different 
subtypes (Figure  4A). The survival prognosis informa-
tion for different subtypes was significantly different, 
and cluster C2 was associated with a poor prognosis. 
The distribution of the expression of the 19 cupropto-
sis genes evaluated in each subtype was plotted on a 
heatmap (Figure  4B). For all HNSCC samples, clinical 
information of the samples was classified and the corre-
lation analysis between the subtypes and clinical char-
acteristics of the samples was performed (Additional 
file  1: Appendix  4). As shown by the Chi-square test 
results in Figure  4C, there were significant differences 
in the TMN staging (Clinical_N, Clinical_T, and Clini-
cal_stage) between the two subtypes.

Fig. 2 A Consensus clustering cumulative distribution function (CDF) for k = 2–6. B Consensus clustering matrix for k = 2. C PAC validation curve

Fig. 3 A Comparison of cuproptosis scores between different subtypes. B KM survival curves for cuproptosis scores
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Comparison of the immune microenvironment 
between cuproptosis subtypes
Based on the expression profile data of the HNSCC 
samples, the CIBERSORT algorithm was used to cal-
culate the immune cell types of each sample and the 
proportion of each of the 22 immune cell types was 
obtained. The information is shown in Additional 
file  1: Appendix  5. Differences in the proportion of 
various immune cells were compared between differ-
ent subtypes. Based on P < 0.05 as the threshold, 12 
distinct immune cell types (DICs) were identified, 
and Fig.  5A shows the comparison results between 
groups. Using the Estimate algorithm, immune and 
matrix scores were calculated, as shown in Additional 
file  1: Appendix  6. The differences in immune and 
stromal scores between different subtypes were then 
analyzed, as shown in Fig.  5B. Cluster C1 was found 
to have higher percentages of CD8+ T cells, follicu-
lar helper T cells, T-regs, monocytes, and mast cells 
resting, and lower percentages of activated mast cells, 
macrophages, CD4+ T cells, and plasma cells than 
cluster C2.

Analysis of immune checkpoints and HLA family genes 
between subtypes
The expression of immune checkpoint genes extracted 
from TCGA dataset is shown in Additional file  1: 
Appendix  7. Differences in immune checkpoint gene 
expression between different subtypes were compared, 
with P < 0.05 as the threshold and a total of 11 immune 
checkpoint genes (CD278, LAG3, BTLA, PD-1, 4-1BB, 
CTLA-4, CD47, TIM3, PD-L1, TIGIT, and OX40) 
with significant differences were obtained; the com-
parative analysis between subtypes is shown in Fig.  6A. 
The expression of the HLA family gene was compared 
between different subtypes using the Wilcoxon test. The 
comparisons between subtypes are shown in Fig. 6B and 
the list is provided in Additional file 1: Appendix 8.

The expression of 19 HLA family genes (HLA-A, 
HLA-B, HLA-C, HLA-DMA, HLA-DMB, HLA-DOA, 
HLA-DPA1, HLA-DPB1, HLA-DPB2, HLA-DQA1, HLA-
DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-
DRB1, HLA-DRB5, HLA-DRB6, HLA-E, and HLA-F) was 
significantly different between clusters C1 and C2, and all 
genes were upregulated in cluster C1.

Fig. 4 A KM survival curves of different subtypes. B Heat map of the 50 most differentially expressed genes. 
Blue represents low expression; red represents high expression. C The clinical features between the two subtypes of patients



Page 8 of 19Wang and Zhou  Journal of Otolaryngology - Head & Neck Surgery           (2023) 52:58 

Identification of differentially expressed genes 
between subtypes
Using the method described in Step “Comparison of 
immune checkpoint genes and HLA family gene differ-
ences between subtypes”, a differential gene analysis was 
performed between the two subtypes (Fig.  6C, Addi-
tional file 1: Appendix 9), and 101 differentially expressed 
genes were obtained. Among these, the expression of 
69 genes such as GCSH, B4GALNT1 was up-regulated 
and that of 32 genes such as PTPRCAP, ZNF683 was 
down-regulated.

Enrichment analysis of functional pathways
GO function and KEGG signal pathway enrichment 
analyses were performed for the DEGs obtained in Step 
“Identification of differentially expressed genes between 
subtypes” to explore the functional terms involving 
the key genes. Enrichment results are shown in Fig. 7, 

which lists the Top10 results having a P-value < 0.05 
and FC > 2 as thresholds. A total of 146 significantly 
correlated DEGs enriched in 9 cell components, 26 bio-
logical processes involved in 15 KEGG signaling path-
ways, and 17 molecular functions were selected. The 
information is shown in Additional file 1: Appendix 10. 
Among the biological processes, the DEGs were mainly 
enriched in cell–cell signaling, epithelium develop-
ment, and biological adhesion. Regarding the cellular 
components, the DEGs were significantly enriched in 
the collagen-containing extracellular matrix and the 
external encapsulating structure. For molecular func-
tions, DEGs were significantly enriched in signaling 
receptor binding. Figure 7 shows all the detailed results 
of the GO term enrichment analysis. In addition, 5 
DEGs were significantly enriched in chemical carcino-
genesis pathways.

Fig. 5 A Immune cell types with significant differences between the two subtypes using CIBERSORT. B The violin plots of different infiltration 
levels of immune cells with immune scores and stromal scores in different subtypes.* indicates a p value of less than 0.05; ** indicates a p value 
of less than 0.01;*** P value of less than 0.001



Page 9 of 19Wang and Zhou  Journal of Otolaryngology - Head & Neck Surgery           (2023) 52:58  

Fig. 6 A Differential expression of the immune checkpoint genes in different subtypes. B The expression difference of HLA family between different 
subtypes. * indicates a p value of less than 0.05; ** indicates a p value of less than 0.01; *** P value of less than 0.001. C Volcano plot 
for differential gene expression.Blue represents low expression; red represents high expression. D Heat map of differential gene expression
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Identification of genes significantly associated 
with prognosis
Among the DEGs identified in Sect. "Identification of dif-
ferentially expressed genes between subtypes" above, a 
total of 42 genes, including CHGB, GRB14, PTPRCAP, 
with significant prognostic correlation were selected 
by univariate Cox regression analysis using the R3.6.1 
language survival package (v2.41-1) with P < 0.05 as the 
threshold (Fig. 8), and the gene list is provided in Addi-
tional file 1: Appendix 11.

Construction of the prognostic model and performance 
verification
Based on the expression data of 42 prognostic genes 
identified in 3.9 above, the LASSO algorithm was used 

to select optimized genes (Figs.  9) and 11 key genes 
were obtained. Stepwise COX regression algorithm was 
used to select the optimal gene combinations (Fig.  9). 
Finally, 8 model genes (CHGB, GRB14, SRPX, PTPR-
CAP, ZFR2, ZNF556, GZMH, and C1orf186) were 
obtained. The Risk Score model was then constructed 
based on the regression coefficients of these 8 genes 
and their expression levels in TCGA training data set. 
Of these, CHGB, GRB14, SRPX, and CCNA1 were pos-
itively correlated with the Risk Score. The Risk Score of 
each patient was calculated and the samples in TCGA 
training set and the GEO verification set were divided 
into High-risk (Risk Score higher than the median value 
of the Risk Score) and Low-risk (Risk Score equal to 
less than the median value of the Risk Score) groups. 

Fig. 7 GO functional and KEGG pathway enrichment of differentially expressed genes. A–C Bubble chart, the horizontal axis represents 
the proportion of those genes, the vertical axis represents the pathway name, the size of the dot indicates the number of genes expressed 
in the pathway, and the color of the dot corresponds to the different Qvalue range. D Chord diagram, the outer circle shows differentially expressed 
genes involved in the pathway
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Fig. 8 Univariate regression forest plot of the 42 prognostic genes

Fig. 9 A LASSO coefficient profiles of the 42 prognostic genes. B Partial likelihood deviance for the LASSO coefficient profiles. Two vertical dotted 
lines indicate lambda. min(the red line on the left) and lambda.1se (The black line on the right). C Forest plot of multivariate Cox regression analysis 
of 8 model genes
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The distribution of the Risk Score value and the survival 
time distribution for each group is shown in Fig.  10A 
and D. The Kaplan–Meier curves were then used to 
assess the association between the High- and Low-risk 
groups and the actual prognoses of the patients. The 
Kaplan–Meier curves for each data set are shown in 
Fig. 10B and E, respectively. ROC curves of 1-, 3-, and 
5  year survival based on genetic prognostic character-
istics are shown in Fig.  10C and F. In TCGA training 
set and the GEO validation set, the different risk groups 
based on the prediction of the Risk Score model were 

significantly correlated with the actual prognosis; the 
high-risk group had a worse prognosis. The scores and 
grouping of the Risk Score in the training and valida-
tion sets are shown in Additional file  1: Appendix  12 
and 13, respectively.

Prognostic independence analysis
The clinical information of all TCGA head and neck 
cancer samples was extracted (Additional file 1: Appen-
dix  14). Univariate Cox regression analysis was per-
formed on the clinical factors and for each risk group 

Fig. 10 A The risk score distribution, and patients survival status in TCGA training set. B KM survival curves based on riskscore prediction model. C 
ROC curves of the training set for 1-year, 3-year and 5-year survival. D The risk score distribution, and patients survival status in GEO validation set. E 
KM survival curves based on riskscore prediction model. F ROC curves of the validation set for 1-year, 3-year and 5-year survival
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using the R3.6.1 language survival package. Factors with 
P < 0.05 were selected for multivariate Cox regression 
to identify significant independent prognostic factors 
(Fig. 11). Multivariate Cox regression analysis confirmed 
that the risk group was an independent prognostic factor 
after adjustment for other clinicopathological factors.

Development of a nomogram to predict survival based 
on independent prognostic factors
To further analyze the correlation between age and risk 
group, which were significantly correlated with prognosis 
and survival prognosis, age and risk group were included 
in the construction of a Nomogram survival model, as 
shown in Fig.  12A. Integrating various clinical indica-
tors into the "Total points" axis in the first row predicted 
the survival of the samples. The consistency between the 
1-, 3-, and 5-year survival rates predicted by the survival 
model and the actual 1-, 3-, and 5-year survival rates 
was analyzed and verified (Fig.  12B). Figure  12C shows 
that the nomogram is significantly associated with the 
patient’s prognosis. The 1-, 3-, and 5-year ROC curves of 
the nomogram of the nomogram are shown in Fig. 12D.

Analysis of drug sensitivity
The sensitivity of each patient to chemotherapeutic 
agents was estimated based on the cancer drug sensitiv-
ity genomics database, and the IC50 was quantified using 

the pRRophetic package in R. We compared the differ-
ences in the IC50 levels of 138 chemotherapeutic agents 
(Additional file  1: Appendix  15) and the six common 
chemotherapeutic agents identified are shown in Fig. 13.

Prediction of the efficacy of immunotherapy
Using the TIDE algorithm, a TIDE score was calculated 
for each patient with HNSCC to predict his response to 
immune checkpoint therapy (Additional file 1: Appen-
dix 16). As shown in Fig. 14A, subjects in the high-risk 
group showed higher TIDE scores than those in the 
low-risk group.

GSEA enrichment analysis
GSEA analysis revealed that there were 9 sets of hall-
mark genes with significant differences in the dif-
ferent risk groups with a value of P < 0.05 and the 
normal enrichment score > 1 as thresholds (Fig.  14B 
and Additional file  1: Appendix  17). The gene sets of 
the high-risk group samples were enriched in the epi-
thelial-mesenchymal transition and the Hedgehog sign-
aling pathways.

Association between high‑ and low‑risk groups 
and cuproptosis subtypes
The relationship between cuproptosis subtype (Clus-
ter) grouping and high and low risk groups (risk group) 

Fig. 11 Forest plots of univariate (A) and multivariate cox regression analysis (B) of clinical information
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Fig. 12 A The nomogram to predict overall survival based on independent prognostic factors. B Calibration plot for nomogram predicted 
and actual survival rate. Vertical axis represents actual survival, and horizontal axis represents the nomogram-predicted survival. C KM survival 
curves based on nomogram prediction model. D ROC curve of nomogram model predicting1-year, 3-year and 5-year survival
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was evaluated (Fig.  14C). Through a one-to-one cor-
respondence of the samples, the Sankey diagram was 
drawn as shown in Fig.  14D and in Additional file  1: 
Appendix  18. The high-risk groups had a signifi-
cantly higher proportion of genes belonging to the C2 
subtype.

Discussion
In this comprehensive study, DEGs involved in cuprop-
tosis were found to have predictive survival value in 
HNSCC and indicate potential response to immunother-
apy. According to our study, the expression of cuprop-
tosis genes was significantly lower in most tumors and 

Fig. 13 IC50 values of six chemotherapeutic drugs in different risk groups

Fig. 14 A Comparison of the TIDE score in different risk groups. B Hallmark gene sets with a significant enrichment. C Distribution between Cluster 
and RiskGroup
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may have a prognostic value in HNSCC. In addition, the 
expression of CRGs was closely associated with immune 
and inflammation-related pathways, immune cell infil-
tration, and several immune-related genes. Before 
cuproptosis was discovered,Eric Winquist’s research [29] 
showed that, Other than cetuximab, no targeted agents 
and radiosensitizers studied in RCTs were shown effec-
tive for HNSCC.But in this research,we found that there 
was an association between cuproptosis and sensitivity to 
cancer chemotherapy drugs. Thus, our study shows that 
cuproptosis might be a biomarker of prognosis and may 
predict response to immunotherapy.

As cancer therapies develop, clinicians now have 
the option to treat patients with HNSCC by targeting 
immune checkpoints. Many anticancer drugs (Dab-
rafenib, vemurafenib,Val-boroPro) show a profound effect 
on programmed cell death, implied that programmed cell 
death,such as apoptosis,autophagy,ferroptosis,may play a 
role in cancer therapy [30]. Previous studies have shown 
that we can reduce cisplatin resistance in cancer cells, 
and enhance the sensitivity of tumor cells to chemothera-
peutic drugs by promoting ferroptosis in tumor cells [31]. 
With the development of anticancer therapies that selec-
tively induce cancer cell death, cuproptosis may become a 
new target for the treatment of HNSCC. In this study, our 
unsupervised cluster analysis subdivided HNSCC into 
two groups C1, C2, which differ significantly in cupropto-
sis gene expression. Clinical_N, Clinical_T, and Clinical_
stage showed significant differences between these two 
subtypes. Combined TCGA and GEO data sets demon-
strated better prognoses and associated with the C1 clus-
ter. In addition, we constructed a prognostic model with 
eight genes associated with prognosis using a LASSO 
Cox regression analysis. Based on the prognostic model, 
the patients were divided into two risk groups, and those 
with a lower Risk Score had better clinical characteristics 
and greater immune cell infiltration. Additionally, in our 
study, we found that age, sex, lymph node metastasis, and 
risk group are important prognostic factors in HNSCC. 
Furthermore, we established a nomogram survival model 
to predict the survival of patients with HNSCC based on 
independent prognostic factors. The high-risk group was 
found to have poorer clinical outcomes. Furthermore, 
we found that the high-risk group had a significantly 
higher proportion of genes present in the C2 subtype. 
A better understanding of the molecular mechanism of 
HNSCC and an accurate prognosis stratification can be 
achieved based on the findings of this study. This could 
lead to novel strategies using immunotherapy for patients 
with HNSCC. By comprehensively evaluating CRGs and 
clinical characteristics, we not only developed an accu-
rate prognosis model, but we also provide a rationale for 
immunotherapy as a treatment method.

Cuproptosis is a new type of cell death that has the 
potential of providing a new approach to the treatment of 
cancer. Recent studies have found that these cuprotosis-
associated genes may be associated with the development 
of diverse tumors, including bladder cancer, hepatocellu-
lar carcinoma, breast cancer, lung cancer, colorectal can-
cer and so on [32–36]. However, several key issues, such 
as the interconnection between cuproptosis and host 
immunogenicity and other cell deaths, remain unresolved 
by current research. A deeper understanding of its regu-
latory system and its specific mechanisms for control-
ling different types of cancer is needed. Thus, this study 
explored whether a CRG signature could predict the 
prognosis of HNSCC patients. To date, there have been 
a few reports suggesting that FDX1 is an important regu-
lator of cuproptosis [4, 5], which is consistent with our 
finding that FDX1 is significantly decreased in HNSCC. 
FDX1 expression has been shown to be highly corre-
lated with lipoylated proteins, while protein lipoylation 
contributes to copper-induced cell death. In our study, a 
significantly decreased expression of FDX1 was observed 
in HNSCC patients.So as another important regulator of 
cuproptosis-LISA.

Cuproptosis subtypes established on the basis of 
Cuproptosis scores showed significantly different prog-
noses. Glycine cleavage system H protein (GCSH), an 
important protein complex associated with the tricarbo-
xylic acid cycle, which is highly associated with Cuprop-
tosis, showed higher expression in the C1 subtype [4, 
5]. Currently, there are very few studies on the correla-
tion between GCSH and cancer, and only one article 
has described the correlation between GCSH and breast 
cancer [37]. The study reported that the level of GCSH 
expression in breast cancer tissue was higher than that 
in normal breast tissue, which was similar to our results. 
These findings imply that GCSH may play an important 
role in cancer development.

There were significant differences in immune scores 
between these two subgroups. Previous studies have 
shown that the immune microenvironment of the 
tumor is closely related to the prognosis of patients 
with HNSCC. The immune microenvironment plays 
an important role in the development, prognosis, and 
immunotherapy of tumors. Several changes in the 
immune response have been observed in patients with 
HNSCC, suggesting that it is an immunosuppressive 
cancer [38, 39]. Infiltrating immune cells can influence 
cancer aggressiveness [40]. Our study showed that there 
is no difference in the level of infiltration of naïve B cells 
and B cell memory cells between the two clusters, while 
the level of infiltration of CD8 T cells, follicular helper 
T cells, Tregs, resting NK cells, and activated NK cells 
of the C1 subtype is much higher than that of the C2 
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subtype. These results implied that cell immunity plays 
an important role in the antitumor immune response, 
and high expression of CD8 T cells and NK cells is asso-
ciated with a good prognosis, which remains consistent 
with previous findings [41–43].

Eleven of 13 immune checkpoint genes were up-regu-
lated and most HLA genes showed higher expression in 
the C1 subtype, which appeared to have a better prog-
nosis in patients with HNSCC. Elements of the tumor 
microenvironment disrupt CD8-mediated immunity, 
which contributes to tumor immune escape [44] and 
peripheral blood of patients with HNSCC showed sup-
pressive activity of regulatory T cells [45]. Interestingly, 
our study found that immunostimulator, CD8 T cells, 
PD-L1, and immunosuppressive factors, PD-1, CTLA-4 
and Tregs were highly expressed in cluster 1, which may 
indicate that the C1 subtype was characteristic of an 
active immune response. Furthermore, in our prognostic 
model, high-risk patients mainly possessed subtype C2, 
while low-risk patients possessed subtype C1. The high-
risk group also had higher TIDE values, meaning that 
they were prone to immune evasion, leading to a worse 
prognosis. The result implied that immunotherapy tar-
geting the tumor microenvironment is feasible.However, 
whether there is a direct relationship between cuprop-
tosis and tumor immune microenvironment needs to be 
further studied.

A tight regulation of copper homeostasis ensures that 
sufficient amounts are available for cuproprotein biosyn-
thesis, and that oxidative stress is limited. Currently, cop-
per ionophores, such as disulfiram (DSF) and elesclomol, 
are being used to treat cancer and have been shown to 
be effective [46, 47]. Researchers have shown that DSF or 
DSF/Cu2+ results in increased intracellular ROS accu-
mulation, which further supports its use as an HNSCC 
treatment regimen [48]. Further research showed that 
these anticancer drugs work by selectively transporting 
Cu ions to the mitochondria and increasing their local 
ROS levels [49], sharing a similar cuproptosis mechanism 
described above, which is consistent with our findings 
that cuproptosis may have a positive effect in the treat-
ment of HNSCC. When new copper-targeting cancer 
drugs are developed, it will be crucial to determine which 
biomarker of copper homeostasis represents the most 
reliable therapeutic target.

Through functional pathway enrichment analysis, we 
found that differential DEGs were primarily enriched 
in cell–cell signaling, epithelium development, and bio-
logical adhesion, indicating that these genes could act as 
oncogenes, promoting HNSCC invasion. As for cellular 
components, the DEGs were significantly enriched in the 

collagen-containing extracellular matrix and the exter-
nal encapsulating structure, which was consistent with 
the biological functions mentioned above. For molecular 
functions, differential DEGs were significantly enriched 
in signaling receptor binding, which participate in cell-
to-cell signaling.

Although our study provides important insights for 
evaluating cuproptosis and the prognosis of patients with 
HNSCC. There are still some limitations that will need to 
be addressed in future work. First, the small sample size 
decreased the power of the statistical analysis. We are 
continuing to recruit patients and anticipate that a larger 
sample size would confirm our present results. Second, 
we need further functional studies to understand the 
exact regulatory mechanism of cuproptosis in HNSCC. 
The association identified in this research requires valida-
tion by further studies combined with people and animal 
experiments. There is no complete clinical information 
available, such as HPV/tobacco, treatment, histological 
prognostic models, so their model is biased by definition 
to exclude other prognostic factors. Similarly, no protein 
level information can be obtained.

Overall, this study offers new insights into the rela-
tionship between the cuproptosis and the prognosis of 
patients with HNSCC. Its findings could contribute to a 
better understanding of the mechanism of cuproptosis 
in HNSCC.The discovery of the mechanism of cuprop-
tosis provides a direction for future drug research, and 
cuproptosis related drugs, that can induce the cuprop-
tosis may have some application prospects in the future 
treatment of cancers.

Conclusions
The classification of genes related to Cuproptosis pro-
vides new insight on the prediction of prognosis and sur-
vival of patients with HNSCC and offers novel predictive 
and therapeutic strategies for these patients.
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